Reactions of Platinum(II) Aqua Complexes. 3. Multinuclear (¹⁵N, ¹⁹⁵Pt, ¹³C, and ¹H) NMR Study of Reactions of Aqua and Hydroxo Complexes with Glycine and (Methylimino)diacetic Acid¹

TREVOR G. APPLETON, JOHN R. HALL,* and STEPHEN F. RALPH

Received September 24, 1984

Pt(H₂O)₄²⁺ with glycine (glyH) gives Pt(H₂O)₃(glyH-O)²⁺ and Pt(H₂O)₂(glyH-O)₂²⁺ and with (methylimino)diacetic acid (midaH₂) Pt(H₂O)₃(midaH₂-O)²⁺. The mida complex, when heated, does not give *mer*-Pt(mida)(H₂O) but a complex mixture of species, probably with Pt-N-CH₂CO₂-Pt bridging. *cis*-Pt(NH₃)₂(H₂O)₂²⁺ with glycine gives *cis*-Pt(NH₃)₂(glyH-O)(H₂O)²⁺, characterized by ¹⁵N, ¹⁹⁵Pt, ¹³C, and ¹H NMR, which only slowly converts to the chelate complex Pt(NH₃)₂(gly-N,O)⁺. Analogous reactions occur with midaH₂. cis-Pt(NH₃)₂(OH)₂ in alkaline solution reacts slowly with glycinate to give cis-Pt(NH₃)₂(gly-N)₂ and cis-Pt(NH₃)₂(gly-N)(OH).

Introduction

We have recently described the complexes formed by reaction of PtCl₄²⁻ with iminodiacetic acid and (methylimino)diacetic acid $(midaH_2)$ ² In the course of this work, we found that the complexes previously described as meridional platinum(II) compounds (e.g., K[Pt(mida)Cl]·2HCl)³ were, in fact, platinum(IV) compounds (e.g., fac-K[Pt(mida)Cl₃]). While searching for possible routes to a genuine mer-platinum(II) complex (eventually mer-K[Pt(mida)Cl] was prepared with use of K_2 PtCl₄²), we noted that mer-Pd(mida)(H₂O) had been reported, from reaction of Pd(N- $O_3)_2$ in water (essentially $Pd(H_2O)_4^{2+}$) with mida H_2 .⁴ We repeated this preparation and found that all properties including NMR spectra of the product, $Pd(mida)(H_2O)$, were consistent with its having the mer structure I, in agreement with conclusions

by other authors.⁵ We therefore examined the reaction between $Pt(H_2O)_4^{2+}$ and midaH₂ but obtained no simple compound analogous to the palladium complex, I. Multinuclear NMR (including ¹⁹⁵Pt (I = 1/2, 34% abundance) and ¹⁵N (I = 1/2)) has proved to be a very powerful tool in studying the reactions in solution of ligands with $Pt(H_2O)_4^{2+6,7}$ and the related aqua ion *cis*- $Pt(NH_3)_2(H_2O)_2^{2+.8-11}$ This technique was therefore applied to the study of reactions of $midaH_2$ with these cations. When it became apparent that related reactions should also be observed for other amino acids, the study was extended to include reactions of glycine (glyH) with the platinum cations. Since (¹⁵N)glycine was readily available, this also allowed additional spectroscopic

- (2) Appleton, T. G.; Berry, R. D.; Hall, J. R. Inorg. Chem., preceding paper in this issue.

- (3) Smith, B. B.; Sawyer, D. T. Inorg. Chem. 1969, 8, 379.
 (4) Smith, B. B.; Sawyer, D. T. Inorg. Chem. 1968, 7, 1526.
 (5) Anderegg, G.; Malik, S. C. Helv. Chim. Acta 1976, 59, 1498.
 (6) Gröning, O.; Drakenberg, T.; Elding, L. I. Inorg. Chem. 1982, 21, 1820.
 (7) Appleton, T. G.; Hall, J. R.; Ralph, S. F.; Thompson, C. S. M. Inorg. Chem. 1984, 23, 3521.
 (8) Ismail I. M. Schler, P. J. L. Entrational Control of Control
- (8) Ismail, I. M.; Sadler, P. J. In "Platinum, Gold, and Other Metal Chemotherapeutic Agents"; Lippard, S. J., Ed.; American Chemical Society: Washington, DČ, 1983; p 171. Alei, M.; Vergamini, P. J.; Wageman, W. E. J. Am. Chem. Soc. 1979,
- (9) 101, 5415.
- (10) Boreham, C. J.; Broomhead, J. A.; Fairlie, D. P. Aust. J. Chem. 1981, 34, 659.
- (11) Appleton, T. G.; Berry, R. D.; Davis, C. A.; Hall, J. R.; Kimlin, H. A. Inorg. Chem. 1984, 23, 3514.

confirmation of the reactions proposed.

 $\delta_{\mathbf{P}_{t}}$ in monomeric complexes is sensitive primarily to the set of bound donor atoms and only secondarily to the geometry of the complex and structure of the ligands. δ_{Pt} changes regularly from +31 for Pt(H₂O)₄²⁺ to -2579 for Pt(NH₃)₄²⁺ as coordinated water is replaced by ammonia, and complexes with other N or O donors may be expected to give peaks in the same regions as the corresponding amine-aqua compounds.^{8,10} This is extremely useful in assigning peaks to particular complexes.

A preliminary account of some of this work has been published.12

Experimental Section

Preparations of starting platinum complexes and instrumental methods were as previously described.^{7,11} ¹⁵N-substituted glycine (99% Stohler) was supplied by Novachem (Melbourne).

All NMR chemical shifts are positive to lower shielding. ¹⁵N, ¹⁹⁵Pt, and ¹³C spectra were run in H_2O and are ¹H decoupled.

 ^{195}Pt (21.4 MHz) shifts are relative to a separate sample of Na₂PtCl₆ in H_2O (0.5 g/mL).

 ^{15}N (10.1 MHz) shifts are relative to the $^{15}NH_4^+$ signal in a coaxial capillary containing 5 M $^{15}NH_4^{15}NO_3$ in 2 M HNO₃. Quoted Pt-N coupling constants are, where possible, those measured from ¹⁵N spectra, since line widths in ¹⁵N spectra are much narrower than those in ¹⁹⁵Pt

¹³C (25.05 MHz) shifts are relative to external tetramethylsilane (Me₄Si) with the shift of internal dioxane taken as 67.73 ppm.

¹H (100 MHz) shifts are relative to the methyl resonance of 3-(trimethylsilyl)propanesulfonate (TSS) in D₂O.

Preparation of [Pt(NH₃)₂(gly-N,O)]NO₃. A 0.2047-g sample of cis-Pt(NH₃)₂(NO₃)₂ (0.576 mmol) was dissolved with warming in 5 mL of water, and 0.417 g of glycine (0.556 mmol) in 2 mL of water was added. After 30 min, 1 M NaOH solution was added to increase the pH to 6, and the solution was heated at 60 °C for 15 min. The solution was allowed to cool and then concentrated in a vacuum desiccator over concentrated H₂SO₄ to 1 mL volume, to give the product as colorless crystals, which were filtered off and air-dried. The yield was 0.12 g (57%).

The IR spectrum (Nujol and HCBD mulls) showed $\nu_{C=0}$ at 1630 cm⁻¹ as expected for coordinated carboxylate¹³ and a broad ionic nitrate peak at 1350 cm⁻¹

Anal. (J. Kent, this department) calcd for C₂H₁₀N₄O₅Pt: C, 6.6; H, 2.7; N, 15.3; Pt, 53.4. Found: C, 6.6; H, 2.8; N, 15.2; Pt, 53.2.

Results

¹⁹⁵Pt and ¹⁵N NMR data are given in Table I.

 $Pt(H_2O)_4^{2+}$ with midaH₂. The reaction, which we thought might give *mer*-Pt(mida)(H₂O), was monitored initially by ¹H NMR. A solution of Pt(D₂O)₄²⁺ was prepared by dissolving freshly precipitated Pt(OH)₂⁷ in dilute D₂SO₄/D₂O solution, and an approximately equimolar quantity of solid mida H_2 was added. The ¹H spectrum in the strongly acid solution (pD <1) was identical with that of the free ligand under the same conditions

⁽¹⁾ Part 2: Reference 7.

Appleton, T. G.; Hall, J. R. J. Chem. Soc., Chem. Commun. 1983, 911. Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Coor-(12)

⁽¹³⁾ dination Compounds", 3rd ed.; Wiley: New York, 1978; p 311.

······································			¹⁵ N(ammine) ^c				
				ligand		¹⁵ N(gly) ^c	
compd ^a	structure	$\delta \mathbf{Pt}^{b}$	δN	J(Pt-N)	trans to NH ₃	δN	J(Pt-N)
$Pt(H_2O)_3(O_2CCH_3)^{+d}$		-20 (s)					
$Pt(H_2O)_3(glyH-O)^{2+}$	III	-8.1 (s)				+8.95	0
$Pt(H_2O)_2(glyH-O)_2^{2+}$	IV or V	-35.5 (s)				+8.95	0
	IV or V	-42.3 (s)				+8.95	0
$Pt(H_2O)_3(midaH_2-O)^{2+}$	II	-2 (s)					
$Pt(NH_{3})_{2}(O_{2}CCH_{3})(H_{2}O)^{+}e$		-1585.0 (dd)	-87.19	393.6	H ₂ O		
			-81.67	348.1	-0, C-		
$Pt(NH_3)_2(glyH-O)(H_2O)^{2+}$	VIII	-1582.2 (dd)	-87.19	392.1	H,Ō	+9.00	0
			-82.64	358.4	O(gly)		
$Pt(NH_3)_2(midaH_2-O)(H_2O)^{2+}$	XIII	-1579.4 (dd)	-87.28	392.5	H₂O		
			-82.78	362.3	O(mida)		
$Pt(NH_3)_2(O_2CCH_3)_2^e$		-1581.5 (t)	-83.12	349.6	-02C-		
$Pt(NH_3)_2(glyH-O)_2^{2+}$	IX	-1573.8 (t)	-83.85	359	O(gly)	+9.00	0
$Pt(NH_3)_2(gly-N,O)^+$	Х	$-2128.6 (ddd)^{f}$	84.91	331.1	O(gly)	-54.43	275.0
			-64.93	301.3	N(gly)		
$Pt(NH_3)_2(midaH-N,O)^+$	XIV	-2080.4 (br t)	-76.40	355.4	O(mida)		
			-68.90	306.6	N(mida)		
$Pt(NH_3)_2(gly-N)(OH)$	XII	-2126 (dt)	g	287 <mark>n</mark>	OH	-47.9	314 ^h
			g	287 ⁿ	N(gly)	<i>'</i>	
$Pt(NH_3)_2(gly-N)_2$	XI	-2661 (tt)	-65.2	280	N(gly)	-49.3	312

^a All ammine complexes with ¹⁵N-substituted ammine, and cis. ^b Shifts to lower shielding from PtCl₆²⁻; s = singlet, d = doublet, t = triplet, br = broad. ^c Shifts to lower shielding from ¹⁵NH₄⁺; coupling constants (Hz) from ¹⁵N spectrum, except where otherwise noted. ^d From ref 7. ^e From ref 11. ^f For fully ¹⁵N-substituted compound. ^g Overlaps with other peaks. ^h From ¹⁹⁵Pt spectrum.

 $(\delta_{CH_2} = +4.31, \delta_{CH_3} = +3.20)$, both singlets). NaOD/D₂O solution was added to bring the pD up to 2-3, just below the precipitation point for platinum hydroxide, and still the spectrum showed only two singlets which could be attributed to free ligand, slightly broader than before.

If the solution was heated at this stage, or allowed to stand overnight, the pD decreased, indicating that coordination had occurred. The spectrum then showed a multitude of peaks near 3.2 and near 4.5 ppm.

¹⁹⁵Pt NMR was then used to study the reaction. A solution of $Pt(H_2O)_4^{2+}$ in 1 M $HClO_4$ was prepared, as previously described,⁷ and an approximately equimolar amount of solid midaH₂ was added. The ¹⁹⁵Pt spectrum in this strongly acid solution showed only a singlet at +31 ppm assigned to $Pt(H_2O)_4^{2+.6.7}$ NaOH solution was added to increase the pH to 2.0. A new peak grew over 1 h at -2 ppm, assigned to a mida complex. δ_{Pt} depends primarily on the donor atoms bound to platinum,¹⁴ and this shift corresponds to platinum bound by four O atoms, PtO₄, rather than PtO₃N, which would be expected at much higher shielding.⁸ The new compound may then be most reasonably assigned as Pt-(H₂O)₃(midaH₂-O)²⁺ (II) (cf. Pt(H₂O)₃(O₂CCH₃)⁺, $\delta_{Pt} = -20^7$).

This complex must also be formed under similar conditions in the ¹H NMR experiment, but its peaks are coincident with those from free ligand.

When a solution containing II was heated or allowed to stand overnight, all ¹⁹⁵Pt peaks disappeared. Taken with the multitude of peaks observed in the parallel ¹H experiment, this suggests that polynuclear complexes containing Pt-N-CH₂-CO₂-Pt bridges were formed, giving a large number of different environments for both platinum and the ligand nuclei. Many platinum atoms would also be coordinated by quadrupolar ¹⁴N, which would broaden the platinum signals.

 $Pt(H_2O)_4^{2+}$ with glyH (Scheme I). An approximately equimolar amount of glycine (either ¹⁴N or ¹⁵N) was added to a solution of $Pt(H_2O)_4^{2+}$ in 1 M HClO₄, and NaOH solution was added to increase the pH to 3. Three new peaks grew to higher shielding from that from the starting complex, assigned to a Scheme I. Reactions of $Pt(H_2O)_4^{2+}$ with Glycine

mono(glycine-O) (III) and *cis*- and *trans*-bis(glycine-O) (IV and V) complexes (there is no obvious basis for assigning a specific peak to each geometrical isomer). Shifts are slightly pH dependent. With standing, the pH fell to 1.5. The spectrum shown in Figure 1 and the shifts in Table I were obtained at this pH.

If (^{15}N) glycine was used, the ¹H-decoupled ¹⁵N spectrum at this stage showed two singlets slightly to lower shielding from ¹⁵NH₄⁺, at +7.45 ppm due to free glycine (partly protonated)¹⁵ and at +8.95 ppm due to O-bound glycine (peaks from III, IV, and V all coincident). No Pt-N coupling was observed in ¹⁹⁵Pt or ¹⁵N spectra.

A small amount of brownish precipitate also formed as the pH fell, on standing. From the IR spectrum, it appears to be a mixture of the isomers of $Pt(gly-N,O)_2$ (VI and VII) contaminated with hydrated platinum oxide, which slowly precipitates from a solution

⁽¹⁵⁾ Leipert, T. K.; Noggle, J. H. J. Am. Chem. Soc. 1975, 97, 269.

Figure 1. 21.4-MHz ¹⁹⁵Pt NMR spectrum of a solution (pH 1.5) obtained by addition of glycine to $Pt(H_2O)_4^{2+}$ in $HClO_4/H_2O$: (A) $Pt-(H_2O)_4^{2+}$; (B) $Pt(H_2O)_3(glyH-O)^{2+}$ (III); (C, D) isomers of $Pt(H_2O)_2$ - $(glyH-O)_2^{2+}$ (IV, V).

Scheme II. Diammineplatinum(II) Compounds with Glycine and Glycinate

of $Pt(H_2O)_4^{2+}$ allowed to stand at pH >2.¹⁶ The acid generated inhibits further reaction, and the solution becomes indefinitely stable. If NaOH solution was added, to maintain the pH at 3-4 for several hours, much more of the insoluble precipitate formed, and platinum signals became too weak to be detected. The ¹⁵N spectrum of the solution showed much weaker peaks near +8 ppm, and a very weak singlet at -52.9 ppm, probably due to a trace of chelate complex remaining in solution.

cis-Pt(NH₃)₂(H₂O)₂²⁺ with glyH (Scheme II). A solution of cis-Pt(¹⁵NH₃)₂(NO₃)₂ in H₂O shows peaks in its ¹⁹⁵Pt and ¹⁵N NMR spectra due to cis-Pt(¹⁵NH₃)₂(H₂O)₂²⁺ ($\delta_{Pt} = -1583.7, 1:2:1$ triplet; $\delta_N = -85.83$, singlet with satellites, ¹J(¹⁹⁵Pt-¹⁵N) = 390.6 Hz),9-11 with very much weaker peaks, ignored in future discussion here, due to cis-Pt(¹⁵NH₃)₂(ONO₂)(H_2O)^{+.11} Addition of an equimolar amount of (14N)glycine caused a new set of peaks to grow in NMR spectra (Table I), assigned to cis-Pt(¹⁵NH₃)₂- $(glyH-O)(H_2O)^{2+}$ (VIII), analogous to *cis*-Pt(¹⁵NH₃)₂-(O₂CCH₃)(H₂O)^{+,11} The similarity of δ_{Pt} (-1582.2) to that of cis-Pt(NH₃)₂(H₂O)₂²⁺ indicates that platinum is still bound by two N atoms and two O atoms. Observation of a doublet of doublets in the ¹⁹⁵Pt spectrum and two singlets with satellites in the ¹⁵N spectrum indicates that the coordinated ammine ligands

are nonequivalent. The Pt-N coupling constants correspond to one ammine being trans to water, and the other trans to a ligand of slightly higher trans influence, carboxylate. The latter coupling (358.4 Hz) is a little larger than in the acetate analogue (348.1 Hz), presumably owing to the effect of the positively charged amine group.

When (¹⁵N)glycine was used, an identical ¹⁹⁵Pt spectrum was obtained, and the ¹⁵N spectrum showed two additional singlets at +9.53 ppm, due to free glycine (at pH 4.0), and at +9.00 ppm, due to VIII. The ¹⁵N chemical shift and lack of Pt-N coupling again confirmed that glycine nitrogen was not coordinating.

In a parallel experiment using cis-Pt(¹⁴NH₃)₂(NO₃)₂ and (^{14}N) glycine in D₂O, the ¹H NMR peak due to the methylene protons of VIII was identified, a singlet at 3.74 ppm, with no resolved coupling to ¹⁹⁵Pt (cf. free glycine at pD 3.5, 3.60 ppm). The methyl protons of cis-Pt(NH₃)₂(O₂CCH₃)(H₂O)⁺ also showed a singlet, without detectable coupling to platinum.¹¹

The methylene C atoms of VIII showed a singlet at 42.15 ppm with satellites $({}^{3}J(Pt-O-C-C) = 32 \text{ Hz})$ (cf. ${}^{3}J(Pt-O-C-CH_{3})$ in the acetate analogue, 32.3 Hz^{11}). The carboxyl C atom of VIII gave a singlet at 175.34 ppm, significantly more shielded than in the acetate complex (183.47 ppm), which is in the range more typical of coordinated carboxylate.¹⁷ ²J(Pt-O-C), 11.6 Hz, is also much less than in the acetate, 30 Hz. These differences probably arise because of the proximity of the NH_3^+ group in the glycine complex.

Even when equimolar quantities of cis-Pt(NH₃)₂(H₂O)₂²⁺ and glycine were used, new NMR peaks, in addition to those from VIII and the diaqua complex, soon appeared in the spectra, which were assigned to cis-Pt(NH₃)₂(glyH-O)₂²⁺ (IX) (¹⁵N and ¹⁹⁵Pt data, Table I). These peaks became more intense if excess glycine was used (¹H and ¹³C data: $\delta_{\rm H}$, singlet, 3.70; C(methylene) coincident with peaks from VIII, 42.15 ppm, ${}^{3}J(Pt-O-C-C) =$ 32 Hz; C(carboxyl) 175.57 ppm, ²J(Pt-O-C) 12 Hz). This complex is analogous to cis-Pt(NH₃)₂(O₂CCH₃)₂.¹¹ When (¹⁵N)glycine was used, the glycine ¹⁵N peak was coincident with that from VIII, at +8.95 ppm.

There was no change in the ¹⁹⁵Pt, ¹⁵N, and ¹H spectra of VIII and IX between pH 4.5 and 1.5, which is consistent with the amine group of coordinated glycine remaining protonated over this range.

Some weaker peaks were also observed in the ¹⁵N spectra, probably due to dinuclear species, as observed with acetate.¹¹

VIII and IX persisted in solution at 25 °C for several hours, but peaks assigned to the chelate complex $Pt(NH_3)_2(gly-N,O)^+$ (X) slowly grew, while the pH decreased from an initial value near 4.5 to 1.5. Conversion to X was almost complete after 24 h. Heating at 60 °C for 15 min, or adding NaOH solution to increase the pH to 8, caused rapid formation of X. If, on the other hand, HClO₄ was added immediately after addition of glycine to the diaqua complex to make the initial pH 1.5, VIII and IX formed within 1 h, but after 3 weeks there was still only a trace of X present, and several more weeks were required before the reaction neared completion.

The chloride salt $[Pt(NH_3)_2(gly-N,O)]$ Cl has been previously reported,¹⁸ but not NMR data. [Pt(NH₃)₂(gly-N,O)]NO₃ was isolated from the reaction solution, and analytical results and IR spectra (see Experimental Section) are consistent with the configuration assigned on the basis of NMR.

¹H and ¹³C NMR spectra were run with use of (¹⁴N)glycinate compound. The ¹H spectrum in D_2O showed a singlet at 3.61 ppm, with satellites $({}^{3}J(Pt-N-CH_{2}) = 32.0 \text{ Hz})$. The large Pt-N-CH₂ coupling is as expected for a chelate complex.¹⁹ The methylene protons were not exchanged with solvent deuterium even after several hours at pD 10. The ¹H-decoupled ¹³C spectrum showed two singlets with satellites: $\delta_{\rm C}$ (methylene) = 47.57, J-(Pt-C) = 28.3 Hz; δ_{C} (carboxyl) = 190.04, J(Pt-C) = 39.0 Hz.

Gil'dengershel, Kh. I. Dokl. Akad. Nauk SSSR 1961, 138, 369. Erickson, L. E.; McDonald, J. W.; Howie, J. K.; Clow, R. P. J. Am. (19)Chem. Soc. 1968, 90, 6371.

(16) Elding, L. I. Inorg. Chim. Acta 1976, 20, 65.

⁽¹⁷⁾ Howarth, O. W.; Moore, P.; Winterton, N. J. Chem. Soc., Dalton Trans. 1974, 2271

Figure 2. ¹H-decoupled 10.1-MHz ¹⁵N NMR spectra of solutions in H₂O: (a) $Pt(^{15}NH_3)_2(gly-^{14}N,O)^+$ ((A) *cis*- $Pt(HH_3)_2(H_2O)_2^{2+}$, (B) NH₃ trans to glycinate O, (C) NH₃ trans to glycinate N); (b) $Pt(^{14}NH_3)_2$ -($gly-^{15}N,O)^+$; (c) $Pt(^{15}NH_3)_2(gly-^{15}N,O)^+$.

¹⁵N spectra were run on samples with three nitrogen isotopic substitutions, allowing unambiguous assignments of all ¹⁵N peaks (Table I): Pt(¹⁵NH₃)₂(gly-¹⁴N,O)⁺ (Figure 2a), Pt(¹⁴NH₃)₂-(gly-¹⁵N,O)⁺ (Figure 2b), and Pt(¹⁵NH₃)₂(gly-¹⁵N,O)⁺ (Figure 2c). For the first two isotopomers, each distinct ¹⁵N nucleus gave a singlet with satellites, but in the totally ¹⁵N-substituted compound, ¹⁵N-Pt-¹⁵N coupling of 3.9 Hz was observed between the glycinate N atom and the trans ammine N atom (cf. 5.4 Hz in *cis*-Pt(¹⁵NH₃)₂((¹⁵N₂)N-methylimidazole)₂²⁺⁹). ¹J(Pt-N) trans to carboxylate, 331.1 Hz, is lower than in VIII or *cis*-Pt-(¹⁵NH₃)₂(O₂CCH₃)(H₂O)⁺, suggesting that the trans influence of carboxylate has increased with its incorporation into a chelate ring. The parameters in Table I for ¹⁵NH₃ trans to glycinate N may be compared with those reported for Pt(¹⁵NH₃)₄²⁺ ($\delta_N =$ -65.5, ¹J(Pt-N) = 283 Hz).¹⁰

Of the three isotopomers, only Pt(15 NH₃)₂(gly- 15 N,O)⁺, with no quadrupolar 14 N bound, gave a sharp 195 Pt spectrum, a doublet of doublets of doublets (Figure 3) from coupling to three nonequivalent 15 N nuclei, at -2128.6 ppm. This shift is in the region expected for a PtN₃O complex (cf. -2070 ppm for Pt(15 NH₃)₃-(H₂O)^{2+ 8,20}).

Pt(NH₃)₂(gly-N,O)⁺ (X) with gly⁻ (Scheme II). Addition of alkali to a solution containing Pt($^{15}NH_3$)₂(gly- ^{15}N ,O)⁺ (X) and (^{15}N)glycine caused two new doublets with satellites to appear in the ^{15}N NMR spectrum, assigned to *cis*-Pt($^{15}NH_3$)₂(gly- ^{15}N)₂ (XI). Assignments in Table I were confirmed by varying the isotopic substitution. The trans $^{15}N(ammine)$ -Pt- $^{15}N(gly)$ coupling is 3.7 Hz. The 195 Pt spectrum showed a triplet of triplets at -2661 ppm, in the region expected for a PtN₄ complex (cf. Pt($^{15}NH_3$)₄²⁺, -2579 ppm¹⁰).

cis-Pt(NH₃)₂(OH)₂ with gly⁻ (Scheme II). If the pH of a solution of cis-Pt(NH₃)₂(H₂O)₂²⁺ is increased to 6-8, the hydroxo-bridged oligomers [Pt(NH₃)₂(μ -OH)]_nⁿ⁺ (n = 2, 3) predominate, but at higher pH, cis-Pt(NH₃)₂(OH)₂ is stable (NMR

Figure 3. 21.4-MHz ¹H-decoupled ¹⁹⁵Pt NMR spectrum of Pt-($^{15}NH_3$)₂(gly- $^{15}N,O$)⁺ (X) in H₂O.

of (¹⁵N)ammine complex: $\delta_{Pt} = -1572$, triplet; $\delta_N = -76.9$, ¹*J*-(Pt-N) = 293 Hz).^{10,11}

At pH 12.8, there was no detectable reaction over 2 weeks between cis-Pt(NH₃)₂(OH)₂ and glycine. Reaction was still slow over the pH range 9–11 and probably occurred only because of the presence of a small proportion of cis-Pt(NH₃)₂(OH)(H₂O)⁺.

After several days at pH 9–11, a solution obtained from cis-Pt(¹⁵NH₃)₂(OH)₂ and (¹⁵N)glycinate showed, in addition to peaks from the starting material, ¹⁹⁵Pt peaks due to cis-Pt(¹⁵NH₃)₂-(gly-¹⁵N)₂ (XI) at -2661 ppm and a doublet of triplets assigned to cis-Pt(¹⁵NH₃)₂(gly-¹⁵N)(OH) (XII) at -2126 ppm. The doublet splitting was 314 Hz, which, by analogy with XI, could be assigned to ¹J(Pt-N(gly)). The triplet coupling, 287 Hz, then corresponds to ¹J(Pt-N(ammine)) both trans to hydroxide and trans to glycinate N. The "accidental" similarity of the last two couplings causes the ¹⁹⁵Pt pattern to be a doublet of triplets, rather than the expected doublet of doublets of doublets. All ¹⁵N peaks from XII overlapped with the more intense peaks from XI and cis-Pt(¹⁵NH₃)₂(OH)₂ so that ¹⁵N shifts and accurate Pt-N coupling constants could not be obtained. Close examination of the spectra did reveal that $\delta_N(gly)$ for XII was -47.9 ppm.

Peaks due to the chelate complex X were also observed in some spectra. The intensity changes with time are consistent with a major reaction sequence as follows: cis-Pt(NH₃)₂(OH)₂ with gly⁻ gives cis-Pt(NH₃)₂(gly-N)(OH) (XII), which very slowly closes the chelate ring to form Pt(NH₃)₂(gly-N,O) (X), which is subsequently attacked by gly⁻ to form cis-Pt(NH₃)₂(gly-N)₂ (XI) (Scheme II), causing the concentration of X to pass through a maximum.

As these reactions proceed, OH^- is released, increasing the pH and inhibiting further reaction (it is difficult to buffer these solutions without introducing potential ligands¹¹). If acid was added to reduce the pH to 6, the chelate complex X formed rapidly.

cis-Pt(NH₃)₂(H₂O)₂²⁺ with midaH₂. The ¹⁹⁵Pt and ¹⁵N NMR spectra were obtained soon after solutions of cis-[(Pt(¹⁵NH₃)₂-(H₂O)₂](NO₃)₂ and midaH₂ were mixed and were very similar to those for cis-Pt(¹⁵NH₃)₂(glyH-O)(H₂O)²⁺ (VIII) (Table I), allowing confident assignment to cis-Pt(¹⁵NH₃)₂(midaH₂-O)(H₂O)²⁺ (XIII). The ¹H NMR spectrum of XIII in D₂O

⁽²⁰⁾ Appleton, T. G.; Hall, J. R.; Ralph, S. F., to be submitted for publication.

showed three singlets, without any platinum coupling, at 3.01 (N-methyl), 4.03, and 4.08 (methylene) ppm (cf. the spectrum of the free ligand at pD 1.5, singlets at 3.16 and 4.04 ppm).

With standing, the solution gradually became more acidic, and a new set of NMR peaks assigned to the chelate compound Pt-(¹⁵NH₃)₂(midaH-N,O)⁺ (XIV) grew. The ¹⁵N spectrum was very

similar to that for $Pt(^{15}NH_3)_2(gly-^{14}N,O)^+(X)$ (Table I). The ¹⁹⁵Pt spectrum showed a broad triplet (two Pt-¹⁵N couplings that are not very different, with broadening from interaction with ¹⁴N) at -2080.4 ppm. The ¹³C spectrum showed carboxyl peaks at 185.63 ppm (coordinated) (J(Pt-C) = 7.8 Hz) and 171.56 ppm (uncoordinated) (J(Pt-C) = 18.5 Hz), methylene peaks at 67.22 ppm (J(Pt-C) = 23.4 Hz) and 63.71 ppm (J(Pt-C) = 12.7 Hz), and the N-methyl resonance at 52.06 ppm (J(Pt-C) = 11.7 Hz). Overall, the spectrum was similar to that of $Pt(midaH-N,O)Cl_2^{-2}$

The ¹H NMR spectrum of XIV was dependent on pD. At pD 3.5, where the uncoordinated carboxyl group is mainly deprotonated, the N-methyl group showed a singlet at 2.98 ppm with satellites, ${}^{3}J(Pt-N-CH_{3}) = 30.8$ Hz, and each methylene group gave an AB pattern. Weaker peaks from platinum coupling were not sufficiently well defined to be analyzed. At pD 13, both AB quartets disappeared as the methylene protons exchanged for solvent deuterium, but the less shielded quartet disappeared much more rapidly and may therefore be assigned as due to the chelated acetate arm. At pD 3.5, the methylene protons of the chelate ring have $\delta_{H_A} = 3.94$, $\delta_{H_B} = 3.81$, and $J(H_AH_B) = 17.2$ Hz and the methylene protons of the uncoordinated arm $\delta_{H_A} = 3.62$, $\delta_{H_B} =$ 3.49, and $J(H_AH_B) = 17.5$ Hz. At pD 1.5, where the uncoordinated carboxyl is mainly protonated, the methylene protons of the chelate ring gave (at 100 MHz) a singlet at 3.92 ppm (i.e. their chemical shifts had become more similar) and the methylene protons of the uncoordinated arm gave $\delta_{H_A} = 3.89$, $\delta_{H_B} = 3.80$, and $J(H_AH_B) = 16.5$ Hz. It is clear that the methylene protons on the uncoordinated arm have been most affected by the protonation of the carboxyl group, as would be expected. The Nmethyl resonance at pD 1.5 occurred at 3.03 ppm with Pt-N-CH₃ unchanged at 30.7 Hz.

Discussion

Although many complexes of platinum(II) and -(IV) with amino acids are known,²¹ there have been no previous reports of compounds in which an amino acid binds to platinum only through carboxylate oxygen. This coordination mode is well-known for some other metal ions (e.g., Co(III)),²² but for Pt(II), generally accepted as "class b" or "soft",23 bonds to nitrogen will be thermodynamically more stable in general than bonds to oxygen. The initially formed O-bound compounds VIII and XIII are converted to the thermodynamically more stable N,O-chelate compounds X and XIV only slowly under acid conditions because there is no

convenient kinetic pathway while the amine group is protonated. Since acid is released in the chelation reaction, it is self-inhibiting.

Analogous compounds would not be expected to be detected when amino acids displace ligands much less labile than H₂O-for example, chloride. The energy input or time required to break Pt-Cl bonds will also suffice to convert an O-bonded ligand to a N,O- or N-bonded ligand. If, on the other hand, the metal-aqua bond is much more labile than in cis-Pt(NH₃)₂(H₂O)₂²⁺ (e.g., in Pd(II) complexes, or trans to methyl in methyl-platinum(IV) complexes^{24,25}), the Pt-carboxylate bond will also be relatively labile. The O-bound ligand is likely to exchange rapidly with solvent water, making detection of the compound difficult, and rearrangement to a chelate or N-bound compound is also likely to be faster.

When one is considering the details of interactions of platinum compounds with complex molecules with multiple potential binding sites, such as proteins or nucleic acids, or such questions as the transport of platinum complexes to various sites in an organism or a cell, it may be appropriate to consider not only Pt-N and Pt-S bonding, known to be thermodynamically very stable, but also "metastable" complexes formed with carboxylate, phosphate, and other O-donor groups.

Behavior of the type described here is not limited to amino acid complexes. Analogous reactions occur, for example, with amino phosphonate ligands, ⁺NH₃(CH₂)_nPO₃H⁻.²⁶

The greater kinetic inertness of Pt(II) relative to Pd(II) is probably mainly responsible for the different products obtained when midaH₂ reacts with $M(H_2O)_4^{2+}$ (M = Pd, Pt). The meridional compound Pd(mida)(H₂O) (I) formed in the more labile system is presumably the most stable thermodynamically, despite the expected angle strain at nitrogen,²⁷ as it maximizes coordination of the metal to N and carboxylate groups. The platinum analogue is probably the most stable species thermodynamically in that system also, but once there is significant Pt-NCH₂CO₂-Pt bridging, the Pt-O bonds are too inert to allow reversion to a simple monomeric compound.

The kinetic inertness of the Pt-OH bonds, which prevents any detectable reaction of cis-Pt(NH₃)₂(OH)₂ with glycinate at high pH and inhibits ring closure in cis-Pt(NH₃)₂(gly-N)(OH) (XII), is also quite remarkable. We have also noted that cis-Pt- $(NH_3)_2(OH)_2$ and $Pt(NH_3)_3(OH)^+$ do not react with ammonia at high pH.²⁰ A similar lack of reaction of PtIV-OH groups with glycinate carboxylate groups to form N,O-chelated glycinate has been reported.28,29

Acknowledgment. We thank the Australian Research Grants Scheme for financial support and R. D. Berry for some initial work on the mida compounds.

Registry No. II, 94570-86-2; III, 94570-87-3; IV, 94570-88-4; V, 94668-01-6; IV, 14281-82-4; VII, 15685-00-4; VIII, 87890-74-2; IX, 87890-75-3; X, 87890-78-6; XI, 94570-89-5; XII, 94570-90-8; XIII, 87890-76-4; XIV, 94570-91-9; [Pt(NH₃)₂(gly-N,O)]NO₃, 94570-85-1; cis-Pt(NH₃)₂(NO₃)₂, 41575-87-5; Pt(H₂O)₄²⁺, 60911-98-0; cis-Pt- $(NH_3)_2(H_2O)_2^{2+}$, 20115-64-4; cis-Pt $(NH_3)_2(OH)_2$, 63700-88-9.

- (24) Appleton, T. G.; Hall, J. R.; Lambert, L. Inorg. Chim. Acta 1978, 29,
- Agnew, N. H.; Appleton, T. G.; Hall, J. R. Inorg. Chim. Acta 1980, (25)**4**1, 71.
- (26) Appleton, T. G.; Hall, J. R.; McMahon, I. J., to be submitted for publication. Cooke, D. W. Inorg. Chem. 1966, 5, 1141.
- (27)
- (28)
- Grinberg, A. A.; K'ang, Y. Zh. Neorg. Khim. 1962, 7, 2304. Agnew, N. H.; Appleton, T. G.; Hall, J. R. Inorg. Chim. Acta 1980, 41, 85. (29)

Volshtein, L. M. Koord, Khim. 1975, 1, 595. (21)

Fujita, J.; Yasui, T.; Shimura, Y. Bull. Chem. Soc. Jpn. 1965, 38, 654. Hartley, F. R. "The Chemistry of Platinum and Palladium"; Applied (22) (23)

Science: London, 1973; p 14.